

Animal cells culture processes

Animal cells bioreactors principles and optimal operations

ONLINE COURSE

On-demand

COURSE FEE

350 € per session

COURSE DESCRIPTION

The course provides an introduction to the concepts and methodologies employed by bioprocess engineers in the design and scale-up of cellular bioreactors.

You will gain a basic understanding of key phenomena influencing cell cultures. And you will learn how to operate bioreactors to efficiently produce biopharmaceuticals, such as cells, proteins, and viruses.

COURSE ORGANIZATION

Course divided in 4 sessions Session scheduling: suggested one per week Effort: 3 - 6 h per session

INSTRUCTOR

Jean-Marc ENGASSER, BioProcess Digital

DIGITAL LEARNING

- Learning platform with course resources
- Live or recorded slideshow videos
- Spreadsheet exercises and bioreactors simulators
- Online collective or one-to-one tutoring

COURSE PROGRAM

Part 1: Bioreactors influencing biochemical and physical phenomena

Session 1: Animal cell cultures kinetics

Rates of cells growth and death, substrates consumption, metabolites production Rates dependences on medium composition

Session 2: Oxygen and CO₂ solubilities and transfer rates

Solubilities of oxygen and carbon dioxide in media

Transfer rates of oxygen and CO₂ between air and culture medium in bioreactors

Part 2: Optimal cell culture bioreactors operations

Session 5: Bioreactor batch and fed-batch operations

Batch operation: optimization of substrates concentrations and product induction time Fed-batch operation under substrates limitations: optimization of medium feeding

Session 4: Bioreactor perfusion operations

Perfusion reactors with suspended and adherent cells Optimal perfusion operations for high cell densities and reactor productivities

The two parts of the course can be taken independently